首页> 外文OA文献 >Entry, Descent, and Landing With Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing
【2h】

Entry, Descent, and Landing With Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing

机译:推进减速的进入,下降和着陆:超音速反推进风洞测试

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.
机译:未来对太阳系的探索将需要在许多行星着陆点的运输以及使用进入,下降和着陆(EDL)系统方面进行创新。太空任务的成本一直高得令人望而却步,使用自然行星和行星的月球大气进行进入,下降和着陆可以降低这些任务的成本,质量和复杂性。本文将描述一些用于行星进入的EDL想法,并调查可能对将来的太阳系任务具有吸引力的EDL总体技术。未来的EDL系统可能包括用于初始大气进入的可充气减速器,以及用于最终软着陆的附加超音速反推进(SRP)火箭系统。作为这些工作的一部分,NASA开始进行实验以收集实验数据,以便就“最佳” EDL选项做出明智的决定。在NASA Glenn 1乘1脚超音速风洞(SWT)中测试了直径为2.5英寸的球锥锥体模型的三引擎逆向推进配置模型。进行测试以识别隧道中潜在的阻塞问题,并在超音速和高音速进入条件下可视化火箭的流动和冲击相互作用。较早地对70种维京式(球形圆锥)航空器进行了实验测试,以此作为超声速推进系统测试的基准。该基准测试定义了机身周围的流场,并根据该比较基准数据评估了逆向推进方案。此处提供了在300和500 psia火箭发动机舱压力下进行SWT测试的图像和分析。用不燃烧的空气流模拟了火箭发动机的流动。

著录项

  • 作者

    Palaszewski, Bryan;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号